If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6-99=0
We add all the numbers together, and all the variables
3x^2-93=0
a = 3; b = 0; c = -93;
Δ = b2-4ac
Δ = 02-4·3·(-93)
Δ = 1116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1116}=\sqrt{36*31}=\sqrt{36}*\sqrt{31}=6\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{31}}{2*3}=\frac{0-6\sqrt{31}}{6} =-\frac{6\sqrt{31}}{6} =-\sqrt{31} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{31}}{2*3}=\frac{0+6\sqrt{31}}{6} =\frac{6\sqrt{31}}{6} =\sqrt{31} $
| 56+g=104 | | 3(p-2)=-9 | | 4w+2=w-10 | | -8x+4(x-2)=-28 | | 3r-7=5r+5 | | 6=1-v | | 4x-6/2(x+1)+4/3x=0 | | −6/5e-2/3e=24 | | -(p+1)=-3 | | 4b-2b=2b | | h-13.75=116.25 | | -8+2d=2d | | -5/3(a+1)=-8/3 | | 5(10^x+2)=25 | | 2x+2x-5=4x-8+3 | | -5/3(a+1=-8/3 | | P^2+0.9p-0.8=0 | | -3.11+k/8=0.85 | | e-20.00=49.85 | | 1=1-8x+4x | | e-$20.00=$49.85 | | -8j+4=8-9j | | (3n+8)=32 | | 4+k/10=3 | | 8n-(3n+8)=32 | | -f=9-4f | | 4x-3=6x+16 | | 8n-(3n+8)=32 | | -4+b/2=-9 | | B-4=8+3b | | 1a+3=2a-7 | | 22+c=31 |